В Нижнем Новгороде создана модель для прогноза динамики явления Эль-Ниньо

Сотрудники Лаборатории моделирования климатических систем ИПФ РАН при поддержке гранта Правительства РФ создали модель, которая может предсказывать индексы, характеризующие динамику климатических явлений Эль-Ниньо и Ла-Нинья, используя данные измерений температуры поверхности океана за предыдущие десятилетия.

Явления Эль-Ниньо и Ла-Нинья представляют собой противоположные фазы так называемого «Южного Колебания Эль-Ниньо» – одной из главных составляющих изменчивости глобального климата Земли на межгодовых масштабах. Проявляясь в виде теплой (Эль-Ниньо) или холодной (Ла-Нинья) аномалии температуры поверхности океана (ТПО) в тропической зоне Тихого океана и повторяясь с нерегулярным временным интервалом продолжительностью от двух до семи лет, Эль-Ниньо и Ла-Нинья существенно влияют на погодные режимы (в частности, на вероятность возникновения экстремальных погодных условий) как в тропических странах, так и во многих других частях земного шара. В последнее время изучению Эль-Ниньо уделяется большое внимание, достигнуто понимание основных механизмов, лежащих в основе этого явления, однако важные особенности взаимодействия этих механизмов и методы моделирования явления в целом до сих пор остаются предметом исследований. Неудивительно, что задача прогноза динамики Эль-Ниньо является крайне актуальной; при этом дальность такого прогноза у существующих на данный момент моделей ограничена лишь несколькими месяцами.

В работе нижегородского коллектива, опубликованной в журнале Climate Dynamics, для прогноза Эль-Ниньо применяется разработанная в ИПФ РАН стохастическая модель на основе искусственных нейронных сетей, которая сначала «учится» воспроизводить эволюцию ТПО в тропиках за прошлые десятилетия (начиная с 1960 года), а затем используется для прогноза. В этой процедуре изменяющиеся во времени пространственно распределенные данные ТПО представляются в виде комбинации всего лишь нескольких «скрытых» пространственно­временных структур, выявление которых является ключевым элементом разработанного алгоритма. Алгоритм осуществляет новый метод поиска таких структур, который учитывает причинно-следственные связи, присутствующие в анализируемых данных измерений ТПО, что приводит к лучшему воспроизведению эволюции ТПО обученной по данным моделью (рис. 1, 2).

Как показывается в работе, созданная модель способна конкурировать с ведущими мировыми моделями (представленными на сайте Международного института исследования климата и общества), предсказывающими динамику Эль-Ниньо. На сайте Лаборатории моделирования климатических систем ИПФ РАН создана специальная страница, на которой каждый месяц выкладывается актуальный прогноз климатического индекса Nino 3.4 – одного из основных индикаторов Эль-Ниньо.

  1. Gavrilov, A., Seleznev, A., Mukhin, D., Loskutov, E., Feigin, A., & Kurths, J. (2019). Linear dynamical modes as new variables for data-driven ENSO forecast. Climate Dynamics, 52(3–4), 2199–2216. DOI: 10.1007/s00382-018-4255-7
  2. Gavrilov, A., Loskutov, E., & Mukhin, D. (2017). Bayesian optimization of empirical model with state-dependent stochastic forcing. Chaos, Solitons & Fractals, 104, 327–337. DOI: 10.1016/j.chaos.2017.08.032
Рис. 1. Среднеквадратичная ошибка прогноза ТПО в различных регионах тропического пояса, вычисленная для созданной модели на интервале ее обучения при дальностях прогноза от 1 до 6 месяцев (см. заголовки рисунков). Красный цвет соответствует небольшой ошибке (хорошей точности прогноза), синий цвет соответствует большой ошибке (худшей точности прогноза). Наиболее хорошо, с дальностью более 6 месяцев, модель может предсказывать ТПО в центральном и восточном Тихом океане – это области, в которых развивается явление Эль-Ниньо
Рис. 2. Зависимость среднеквадратичной ошибки прогноза (вверху) различных климатических индексов, характеризующих динамику Эль-Ниньо, и корреляции прогнозируемых значений индексов с их истинными значениями (внизу) в зависимости от дальности прогноза, отложенной по горизонтальной оси. И ошибка прогноза, и корреляции вычислены на интервале обучения модели. Красным цветом показаны результаты на основе разработанного в ИПФ РАН метода поиска пространственных структур (метода LDM), синим – на основе традиционно используемого многими моделями Эль-Ниньо метода эмпирических ортогональных функций (ЭОФ), пунктиром – результаты наиболее простой авторегрессионной модели для каждого индекса. Первые три колонки соответствуют индексам Nino 4, Nino 3 и Nino 3.4, правая колонка характеризует прогноз непосредственно событий Эль-Ниньо и Ла-Нинья, согласно определению, принятому Национальным управлением океанических и атмосферных исследований США (NOAA)

Как видно из всех рисунков, модель на основе нового метода LDM имеет лучшую прогностическую способность.